
Ray Tracing on the Cell Broadband Engine

Charles Lohr David Chapman
University of Maryland, Baltimore County

Abstract

We propose an interactive ray tracer for use on the Sony
PlayStation 3, using only its CPU, the Cell Broadband Engine for
all computations. We created an interactive ray tracing platform
that can display primitives, particularly spheres that are static,
dynamic, and can be controlled easily via a library. Our output is
viewable in HD on the device that is generating the video via
HDMI or VGA.

We developed this application by utilizing the massively parallel
problem that ray tracing presents by fully utilizing all six SPUs
that the PlayStation 3 provides. We have made this ray tracer
interactive using many optimizations, parallelizing tasks at many
levels. Most of my focus will be on making an intersection
engine that can perform combinations of one-rays-to-one-object,
many-rays-to-one-object, many-to-many-objects and a frustum-
object-collision test.

In this paper, I will focus more heavily on my involvement in this
project and on the need for heavy optimization in the area of
performing intersection tests.

Keywords:real time, raytracing, CELL processor.

Introduction

Video games have always based themselves around rasterization
graphic rendering methods, and non-real-time-methods have
almost always based themselves around ray tracing. This is
because rasterization methods are generally speaking fast, and ray
tracing methods are generally speaking slow, but are able to easily
do effects that are extremely difficult to perform with rasterization
techniques. There are exceptions to this rule, as there are cases
where massive quantities of computing power have been
assembled to perform real-time ray tracing for a video game
[Schmitter, et al. 2004]. These cases are almost purely academic.

We want to focus on a method that can be performed using regular
hardware that over two million Americans have sitting next to
their television sets, the PlayStation3. Our method will also work
on the platform entirely using free software. Additionally, we can
only utilize the processor, as the RSX video processor can only be
accessed by a type 1 hypervisor, as a framebuffer.

While our goal is common and will take a fair amount of
teamwork at the end to complete, the parts of the engine can be
separated easily. We will split the ray tracer up into the following
parts: the user layer, the mechanical layer, the ray-driver layer,
the “datastructure,” the intersector, and the shader. I plan to focus
on the mechanical layer, the user layer and the intersector, as well
as touch upon the idea of a shader. I will mostly cover the parts
that I will work on.

The mechanical layer is what enables input from a user's program,
sets up the environment for ray tracing, handles controlling the
video output and user input devices as well as handling
management of the six available SPUs. The mechanical layer will
also handle all DMA (Direct Memory Access) between each SPU
and main memory along with the code to dynamically move the
output of the ray tracer into the framebuffer for display on a
connected VGA monitor/HDTV.

The user layer is how a user of this “library” will interface to it.
The final version of this part is designed as an executable, where
the user's code is statically linked in. Once linked in, every frame,
the user's code is called with all necessary frame information. In
our current example, the user's application may choose to or
choose not to modify default parameters of the system, but will be
required to perform actions like position the primitives. For our
code, we are hard-coding the system to support exactly sixteen
spheres.

Much of my effort on this project was on the intersector. The
intersector is much less comprehensive than a collision engine, it
simply does ray-primitive collision. For this project, hand-writing
a basic ray-sphere and ray-triangle intersection is not sufficient. I
experimented with different ordering, dealing with multiple
simultaneous and sphere and triangle collisions at once. I coded
multiple rays to single primitive, as well as one ray to one
primitive and one frustum to one primitive. Additionally, the code
to perform sixteen rays-to-sixteen primitives is included but not
heavily optimized. After coding a series of different functions to
handle the collisions, I verified their outputs and clocked them in
different situations to see how fast they behaved in reality on the
PlayStation 3's SPUs. Now complete, I have a library that Dave
can pick the best of to make the ray tracer run as fast as possible.

Related Work

The PlayStation 3 uses a very odd processor, the IBM CELL
processor, an asymmetric, 8 core processor. It has a lot of power
but takes a number of considerations in order to utilize this power.
All of the tactics that I utilized with respect to this project are
described in this paper.

Chow, Fossom and Brokenshire [2006] were among the of the
first to effectively show how processes can be parallelized, even
down through the instruction level on the CELL processor. While
their work was with performing FFTs on the CELL processor,

they helped show specific vectors a programmer could look when
attempting to optimize a program to run on that architecture.

Previous work on the PlayStation 3 with regards to real time ray
tracing only covered static scenes of a very basic and direct nature
[Minor, Gordon 2005], or were limited to very specialized types
of scenes, such as height maps [Benthin 2006]. Our goal is to
have an engine that can handle more than just triangle meshes as
well as being able to handle objects moving around.

Because of some of the newer innovations in Coherent Grid
Traversal [Wald 2006], we can make use of performing
intersection tests on packets of rays simultaneously. Between this
and the already massively parallel structure that the cell processor
makes natural, we are able to ray trace very simple dynamic
scenes at an interactive frame rate.

Background and Outline of Implementation

The user layer and mechanical level of this process are somewhat
direct and do not require much research. Of particular lack of
academic interest is the user layer that will be ignored for the rest
of the paper.

The mechanical layer is of a fair amount of interest. When using
Linux on the PlayStation3, the video card is accessed under a
hypervisor. Conveniently, the way in which the screen is accessed
is memory mapped video, also much to our benefit, this memory
is accessible directly from the Synergistic Processing Units (or
SPUs,) when using DMA. This allows us to have the output of
the highly optimized code running on the SPUs to be sent directly
to the framebuffer, without having to make either the PowerPC
Processing Units, or PPUs or the SPUs spend cycles copying to
and from the local 256KB store. By freeing up the PPU, an
application such as a video game can spend ample CPU time
formulating the scenes instead of worrying about rendering them.

All of the code that we are focusing on and trying to make
extremely fast will be written in assembly. The reason for this is
that we intend to use open source compilers for this project,
keeping everything open source and non-proprietary. Currently,
the GCC compiler does not optimize very heavily, or effectively
for the CELL architecture, and we have been able to gain up to a
4:1 speed up when we write assembly code, compared to
compiling optimized (O3) C code to do the same task.

The core of my research on this project is based on the
intersection of rays, packets of rays, and frustums with an object,
or numbers of objects. I first intersected one object with one ray
and then rewrote the code to intersect 16 rays to a single object. I
spent much effort finding ways of moving instructions and data
around to achieve high performance within the constraints of the
SPU pipeline. I found major speed increases when intersecting
multiple rays to a single object, and less noticeable speed
increases when intersecting multiple objects, probably due to less
effort in the optimization.

The overall plan for implementation is that we have an application
running on the PPU part of the processor. This application builds
the scene as well as all basic data structures that are used by
Dave's algorithm. It then sets up all of the variables for

performing a Whitted-style ray tracer [Whitted 1980] (minus
shading). From there, it generates work units and starts to
determine a way of dividing the work between each of the six
SPUs. It may split the work units even further, should we find
this to be beneficial. As of now, we are simply dividing the screen
into six portions, one per SPU. Once all of the work units are
ready, they are 'shipped off' to the individual SPUs. The SPUs
perform the work necessary for these work packets, and upon
completion of a group of scan lines, it will use DMA to send the
data back to the framebuffer.

The work units are composed of the scene data, any additional
structures that are necessary, the viewing frustum, what pixels the
work unit is responsible for, and the location in the hypervisor to
output the completed ray data.

When testing the code, most of the information regarding each ray
is stored in the SPU's registers, and most of the information
regarding the objects that the rays are hitting are stored within the
SPU's local memory store. By keeping this uniform, I will be able
to stay focused only on changing the two variables that I am
interested in changing: number of rays and number of objects.

Mechanical Outline

In general, when writing code to run on the cell processor, there is
generally a host application that is run on the CELL's PPU. This
host application then can start tasks on the SPUs. In general, the
PPUs are particularly well suited to general purpose computing.
They are able to perform loops and if statements with little
overhead, as well as talking directly to the host operating system,
for our project this is Linux. The SPUs conversely are suited to
streamlined, SIMD tasks, they are extremely powerful floating
point processors, however they are very poor at out-of-order code
execution and not share ram directly with the main memory that
the PPU uses. All communication between the SPUs and main
memory are through DMA so that none of the processors have to
spend clock cycles moving data around. See Figure 1.

For our project, the main core of our ray tracer is located on the
PPU. This is what generates the geometry and viewpoint for the
scene. The PPU app then prepares our ray trace engine to run on
the six SPUs. The PPU app splits the workload between the SPUs
evenly. It generates a “work unit” containing information such as
the geometry in the scene, the camera position, slice of image that
the SPU should compute and the absolute location in ram where
the SPU should output the completed pixel data See Figure 2.

Each of the six SPU application are started simultaneously and
upon start, they use DMA to get the work unit onto the local
cache. Once this is accomplished, Dave's algorithm will be run.
For every group of rays, he will determine what objects the ray(s)
could potentially hit. As it stands now, and as described in my
paper, only the testing code is used to ray trace.

We split the work up into 16 rays at once, using 4x4 packets.
Since our output resolution is 1280x720, this means each group of
four line will contain 320 packets. Once all 320 packets are done,
and the outcome of their information is completely written to a 4-
line buffer in the SPUs local cache, the entire group of lines is
then copied (via DMA) to the hypervised video memory.

Figure 1: General Layout of the PS3 System

Because four lines of data exceed the maximum length of data
that can be transferred in one DMA packet, the data is split in half
and sent as two different DMA packets. The DMA requests are
non-blocking, so having two requests is not an issue.

Because there are six SPUs, and we are splitting the workload
evenly, each SPU ends up only needing to compute 120 lines, or
just 30 of the block-lines. See Figure 3.

During the execution of the program, in order to actually utilize
the frame buffer effectively, VSync must be enabled. Without
VSync, the video output behaves unpredictably. All frame rates,
unless otherwise noted are measured with VSync on, using
1280x720 on an HDMI output device.

Intersector Outline

The intersector code is the most time-critical code. While the
primary intersector intersects sixteen rays simultaneously, when
rendering only one sphere, if unoptimized, it must execute 9,600
times on each SPU to generate a single image. In a general scene,
this code is expected to be called hundreds of thousands of times
per second using Dave's method. In our tests, when rendering
sixteen spheres, this code is executed 153,600 times per frame on
a single SPU.

The SPU's assembly language functions mostly on two to three
registers at a time. The SPU contains a total of 128 registers.
Each register contains four single-precision numbers. In general,
most SPU asm calls work best when operating with two registers,
and outputting to a third. For example, the FA function will take
two registers, and component-wise add them into a third register.
This means that whenever possible, we should be multiplying,
dividing, or performing other operations in parallel on registers.

My main focus on this code is to figure out the best way to pack
data, and perform the SIMD instructions that the SPU performs
best to get as much work as possible done. For sphere collisions,
on a per-ray basis, we tried using a cross product based system to
determine intersection, but abandoned it for a quadratic equation
method. We ended up using the following function to determine
if a ray intersected a sphere. See Figure 3.

Figure 2: Work Flow Layout

a=Dx
2Dy

2Dz
2

b=2DxP x2DyPy2DzP z

c=Px
2
Py

2
P z

2

T=−b±b2
−4ac

2a
Figure 3: Equations for Ray-Sphere Intsection

Where D is the direction of the vector, P is the location of the
sphere minus the location of the camera and T is the distance of
the intersection from the camera in the D direction. Note that this
algorithm demands that the values in D be normalized. In the
event that they're normalized, a will always be equal to one. Also
note that for all rays, because the value of c will be equal, c only
needs to be computed once for all sixteen rays.

Some of the major hurdles with the SPU are both the poor
branching and the SIMD code. All of the PlayStation 3's registers
contain four floating point values. Most floating point operations
act on two registers with a third as an output. For example, the fa
$rt, $ra, $rb function adds registers $ra and $rb, and puts the sum
in $rt. This goes component wise through the registers. This does
not help when many values need to be added sequentially, such as
adding all of the components together in a register.

One of the major optimizations that I use many times in my
algorithm is to transpose a matrix of four registers. This is
particularly useful when trying to add all of the components of a
vector, such as what is necessary for finding the magnitude of a
vector or computing something like b. This can be performed
using the following code, see Figure 4.

We only need the first three components in most situations in our
algorithms, so only reshuffling the first three components is all
that is necessary. The reason that it makes so much sense to order
the data in the way shown in the second block is that it allows one
to sum the components in a, b, c and d very quickly, in fact, in
exactly three fa instructions. The output can be a single register
which component-wise represents the sums of the components in
a-d.

PPUs

SPU

SPU

SPU

SPU

SPU

SPU

Hypervised
Framebuffer

SPU 1

SPU 2

SPU 3

SPU 4

SPU 5

SPU 6

7
2
0
 p

ix
e
ls

1280 pixels

4 Scanlines
1 Block =
16 Pixels

a <aX> <aY> <aZ> <aW>

b <bX> <bY> <bZ> <bW>

c <cX> <cY> <cZ> <cW>

d <dX> <dY> <dZ> <dW>

Is transformed into:

ra <aX> <bX> <cX> <dX>

rb <aY> <bY> <cY> <dY>

rc <aZ> <bZ> <cZ> <dZ>

Using this following code:

 shufb ra, a, b, shuffleAE00;
 shufb rb, c, d, shuffle00AE;
 shufb rc, a, b, shuffleBF00;
 shufb rd, c, d, shuffle00BF;
 shufb re, a, b, shuffleCG00;
 shufb rf, c, d, shuffle00CG;
 <execute unrelated instruction here>
 or ra, ra, rb;
 or rb, rc, rd;
 or rc, re, rf;

Figure 4: Quick transposition for float re-ordering

For the duration of our sixteen-to-one sphere function, we can
hold all 16 b values in only four registers. We can also perform
all functions, like the squaring, subtracting 4ac, square rooting,
etc. on four rays simultaneously.

Because my setup is in the form of a whitted-style ray tracer, and
our algorithm works much faster if D has been normalized, we
have to take the extra step to normalize all rays before continuing.
This normalization benefits from the optimizations we're
performing here.

There were a number of pipeline optimizations that I produced.
One of the major benefits of testing four rows of four pixels each
is that first of all, we can do the optimizations I described above.
But additionally, we can separate groups of code naturally and in
the pipeline. For instance, if we wanted to calculate E = AB +
CD, and we had sixteen of each variable, we organized the code to
be similar what can be seen in Figure 5.

This sort of optimization was performed many times over in the
sphere-ray intersection algorithm. I believe we have taken the
embarrassingly parallel problem of ray tracing and broken it down
to two more levels of ridiculous parallelism, effectively making it
even more embarrassing.

The frustum algorithm benefited most from the parallelism at the
register level, and was able to be condensed down to 21
instructions to test a sphere against four clipping planes, using the
equation shown in Figure 6. NPlane is the plane's normal, SCenter is
the relative center of the sphere WRT the camera.

I did not write any working triangle intersection algorithms.
While the framework exists for a shader, I decided to comment
out the jump and simply shade the color as distance from the eye.

 fm tmp1, A1, B1
 fm tmp2, A2, B2
 fm tmp3, A3, B3
 fm tmp4, A4, B4
 fma E1, C1, D1, tmp1
 fma E2, C2, D2, tmp2
 fma E3, C3, D3, tmp3
 fma E4, C4, D4, tmp4

Offers more than a 3:1 speed increase over

 fm tmp1, A1, B1
 fma E1, C1, D1, tmp1
 fm tmp2, A2, B2
 fma E2, C2, D2, tmp2
 fm tmp3, A3, B3
 fma E3, C3, D3, tmp3
 fm tmp4, A4, B4
 fma E4, C4, D4, tmp4

Figure 5: Ordering of instructions matters.

Visible=NPlane⋅SPosition Radius
Figure 6: Equation for frustum checking

Results

We had extremely good results, Figure 7 was rendered at
1280x720 pixels using my algorithm. No early clipping was
perfomed, and every ray was tested with all sixteen spheres.
When operating V Synced, it received thirty frames per second.

Originally, my test code was written in C, rendering only one
sphere. I received 15 V Syned frames per second when running
that code. I did not implement any systems to do early fail
detection using the frustum culling algorithm, or the algorithm
described earlier in this paper. These rates are brute force.

Also, when testing between partially optimized and the final
product, we found that the time it took to render sixty frames went
from 5.9 seconds to just under five seconds, allowing us to receive
our twelve FPS. When we utilized all six SPUs, our render time
went to two (vsynced) seconds (30 FPS). When we stopped
vsyncing and writing to screen, our speed went up to 52 FPS.
Additionally, we rendered 13 spheres at higher rates (Figure 9.)

We found that the overhead of getting the work units to the SPUs
and getting the data back is surprisingly small, considering the
software limitations that the PlayStation3 has without special
licensing.

The end user application is somewhat less than what was
expected. But it does allow a user to have code in an external file,
game.c. This file executes on the PPU, so it has direct access to a
general purpose processor and the host operating system.

Additionally, when utilizing our system, the PPU was left largely
free to perform any code necessary related to game play. We
found that during our system's execution, the PPUs were over
95% free. See Figure 8.

We have produced a framework and program that allows other
programs to very simply render up to sixteen spheres, at exactly

twelve FPS on an HDTV using a PlayStation3. Possible games
that could be written using this framework include billiards and
possibly a screen saver.

CPU0 : 0.3% us, 8.0% sy, 0.0% ni, 91.7% id
CPU1 : 0.3% us, 0.0% sy, 0.0% ni, 99.7% id

Figure 8: Top usage per PPU during application run.

Future Work

In the future, I plan to continue this work and attempt to add
programmable shading code, to allow objects to specify a type of
shading on a per-object basis, allowing the programmer of the
game to write a custom shader for every object on the screen. In
the event that I do this, the shaders will still have to be written in
assembly, but they should be fairly easy to code, considering the
large number of registers and simplicity of the instructions
provided on the SPU.

I would also like to attempt to find a better way of splitting the
workload between each of the SPUs. As of now, splitting it
evenly across all six SPUs can result in one SPU finishing late,
thus leaving all the other processes idle, while taking up precious
time in the frame.

No attention was paid to even/odd instructions on the SPU that
could potentially speed up the ray tracer. I may investigate that
feature of the SPUs to provide another speed boost to the
algorithms.

Additionally, I would like to take my part of this project, and
make it independent from Dave's, and implement a ray tracer that
supports reflaction. While with the method we are currently

 investigating to down on the collision tests would not allow this,
we could make a ray tracer that does not utilize this and simply
runs slower or with less objects, with more advanced effects.

Instead of providing full triangle support, we would like to
investigate the ability to have specialized functions. This would
allow me to specifically make a game like a billiards game with a
table.

Schmittler, J., Phol,D., Dahmen, T. 2004. Realtime Ray Tracing
 for Current and Future Games.

Chow, Alex C.; Fossum, Gordon C.; Brookenshire, Daniel A.
 2005. A Programming Example: Large FFT on the Cell
 Broadband Engine.

Minor, Barry; Frossum, Gordon; To, Van. 2005. Terrain
 Rendering Engine: Cell Broadband Engine Optimized Real-time
 Ray caster.

Benthin, C.. Wald, I,., Scherbaum, M.. Fredrich, H. 2006. Ray
 Tracing on the Cell Processor;

Ingo Wald, Thiago Ize, Andrew Kensler, Aaron Knoll, Stepheen
 G. Parker. 2006 Ray Tracing Animated Scenes using Coherent
 Grid Traversal.

Whitted, T. 1980 An improved illumination model for shaded
 display. Communications of the ACM 23, 6, 343-349

Figure 7: Sixteen spheres rendered at 30 FPS (Vsynced), 52 FPS
without vsync.

Figure 10: Thirteen spheres being rendered at 60 FPS,
when uncapped, rendered at 64 FPS.

